L’Oceano è il più grande serbatoio di carbonio del pianeta, un sistema naturale che assorbe l’anidride carbonica in eccesso dall’atmosfera e la immagazzina. Circa il 25-30% di CO2 immessa in atmosfera nel corso in tutta l’era industriale è stata assorbita dall’Oceano (“External Forcing Explains Recent Decadal Variability of the Ocean Carbon Sink”, Columbia University). Oggi, grazie alla tecnologia, quello che è un processo naturale può essere riprodotto artificialmente dall’uomo, allo scopo ambientale di raggiungere gli obiettivi del net zero, sempre più pressanti.
Vanno sotto il nome di CCUS, ovvero “Carbon Capture, Utilization and Storage“, l’insieme di tecnologie usate per catturare la CO2 e stoccarla negli Oceani o in altri serbatoio naturali, impedendole di liberarsi nell’aria all’emissione e quindi di inquinare. È, secondo la IEA (International Energy Agency), uno strumento imprescindibile per l’attuazione della decarbonizzazione.
Catturare e stoccare la CO2: come funziona, lo stato attuale
Se le tecnologie che vengono utilizzate per realizzarla sono diverse, l’idea di base è unica ed è semplice: si cattura la CO2, direttamente alla fonte (ovvero dalle industrie che la generano nel processo produttivo). Se non viene riutilizzata in loco, la CO2 catturata viene compressa e trasportata tramite gasdotto, nave, ferrovia o strada per essere o iniettata in formazioni geologiche profonde come serbatoi di petrolio e gas esauriti o acquiferi salini o utilizzata in una serie di applicazioni. Per esempio, come materia prima nella produzione di carburanti sintetici come il metanolo o il diesel sintetico attraverso processi di sintesi chimica; per carbonatare il cemento durante il processo di produzione, trasformandolo in un materiale più resistente e sostenibile; per produrre polimeri, plastica e materiali da costruzione; in agricoltura per aumentare la resa delle colture attraverso il processo di fertilizzazione delle piante; nell’industria alimentare per carbonatare bevande come bibite gassate e acqua minerale; come materia prima per la produzione di vari prodotti chimici, come ad esempio acidi, solventi e fertilizzanti.
Sono solo alcuni esempi: gli sviluppi nella ricerca e nell’innovazione per trovare nuovi modi efficaci ed efficienti per utilizzare questo gas sono continui.
È un modo di decarbonizzare altamente sostenibile. E lo è per una serie di ragioni che individua la stessa IEA: si tratta di un sistema efficace per ridurre le emissioni in settori hard to abate, come il cemento, l’acciaio o i prodotti chimici. È un facilitatore della produzione di idrogeno a basso costo e a basse emissioni di carbonio, utile per la decarbonizzazione delle industrie, ma anche del trasporto su strada e in nave. Inoltre, può essere realizzato in vecchi impianti di produzione di energia e industriali, che non vengono dismessi ma continuano a operare.
A oggi sono attivi circa 500 progetti in varie fasi di sviluppo lungo tutta la catena del valore del CCUS e sono in funzione circa 40 impianti in tutto il mondo, con una capacità annua totale di più di 45 Mt CO2. Sono stati annunciati più di 50 nuovi impianti di cattura che mirano a entrare in funzione entro il 2030: e sono circa un terzo di quanto richiesto per attuare lo scenario net zero a quella data.
Gli Oceani come serbatoio per il carbonio: attenzione all’acidificazione
Chi può davvero accelerare la corsa della CCUS sono le startup: e sono molte che stanno già partecipando a questa sfida climatica. Vogliamo qui in particolare analizzare quelle focalizzate sullo stoccaggio in mare. La CO2 viene assorbita dalla natura in vari modi: per esempio, viene catturata dalla pioggia e poi si lega con il calcare quando ricade al suolo. Si trasforma così in bicarbonato di calcio, finendo poi nel mare. Questo processo naturale si sta però alterando a causa dell’aumento di CO2 nell’atmosfera che acidifica gli oceani, riducendo la quota di ioni carbonati (compresi i bicarbonati) presenti nell’acqua. Quindi, a leggerla così, non sembrerebbe una buona idea quella di iniettare una quantità sempre maggiore di CO2 sul fondo dell’Oceano: perché questa ha effetti collaterali nocivi sulla vita sottomarina ed è, per fare un esempio lampante, assieme alla temperatura il principale responsabile dell’erosione della barriera corallina. Pertanto da sempre, mentre viene assorbita la CO2 nel mare, si elaborano strategie per ridurre al minimo l’acidificazione dell’acqua. I metodi più utilizzati sono l’enhanced weathering, l’ocean alkalinity enhancement e l’electrochemical ocean CO2 capture.
Le prime due si basano sull’introduzione di rocce alcaline finemente tritate nell’oceano al fine di aumentare la sua capacità tampone di assorbire l’anidride carbonica. La terza si basa su tecniche di separazione acido-base e rimozione elettrochimica della CO2 e permette generalmente di creare altri sottoprodotti a fronte di un consumo di energia. Ma c’è bisogno di evolvere la ricerca perché tutti i metodi attualmente in uso per evitare l’acidificazione dell’Oceano sono basati su processi chimici che o richiedono un elevato dispendio di energia oppure comportano il rischio di rilascio di sostanze tossiche (“Asymmetric chloride-mediated electrochemical process for CO2 removal from oceanwater”, Mit).
Le startup che tentano di rendere il processo più efficiente e sostenibile
Sulla base delle tecnologie esistenti e dell’esigenza di migliorarle, le principali startup del settore stanno elaborando nuove idee per rendere l’assorbimento di CO2 negli Oceani più efficiente e sostenibile. La maggior parte delle start-up di questo settore sono nate negli Stati Uniti o in Canada grazie a una maggiore disponibilità di finanziamenti. In Italia c’è Limenet.
Ecco una panoramica:
Lo studio di tecnologie riguardanti l’Ocean Alkalinity Enhancement sta avendo una crescita esponenziale negli ultimi anni. Infatti si sta scoprendo come, in modo semplice e veloce, è possibile andare a stoccare permanentemente la CO2 in fondo al mare, contrastando non solo l’aumento di CO2 in atmosfera ma anche riducendo l’acidificazione dei mari stessa dovuta a questo gas climalterante. |